Functional traits determine plant co-occurrence more than environment or evolutionary relatedness in global drylands.

نویسندگان

  • Santiago Soliveres
  • Fernando T Maestre
  • Matthew A Bowker
  • Rubén Torices
  • José L Quero
  • Miguel García-Gómez
  • Omar Cabrera
  • Alex Cea
  • Daniel Coaguila
  • David J Eldridge
  • Carlos I Espinosa
  • Frank Hemmings
  • Jorge J Monerris
  • Matthew Tighe
  • Manuel Delgado-Baquerizo
  • Cristina Escolar
  • Pablo García-Palacios
  • Beatriz Gozalo
  • Victoria Ochoa
  • Julio Blones
  • Mchich Derak
  • Wahida Ghiloufi
  • Julio R Gutiérrez
  • Rosa M Hernández
  • Zouhaier Noumi
چکیده

Plant-plant interactions are driven by environmental conditions, evolutionary relationships (ER) and the functional traits of the plants involved. However, studies addressing the relative importance of these drivers are rare, but crucial to improve our predictions of the effects of plant-plant interactions on plant communities and of how they respond to differing environmental conditions. To analyze the relative importance of -and interrelationships among- these factors as drivers of plant-plant interactions, we analyzed perennial plant co-occurrence at 106 dryland plant communities established across rainfall gradients in nine countries. We used structural equation modeling to disentangle the relationships between environmental conditions (aridity and soil fertility), functional traits extracted from the literature, and ER, and to assess their relative importance as drivers of the 929 pairwise plant-plant co-occurrence levels measured. Functional traits, specifically facilitated plants' height and nurse growth form, were of primary importance, and modulated the effect of the environment and ER on plant-plant interactions. Environmental conditions and ER were important mainly for those interactions involving woody and graminoid nurses, respectively. The relative importance of different plant-plant interaction drivers (ER, functional traits, and the environment) varied depending on the region considered, illustrating the difficulty of predicting the outcome of plant-plant interactions at broader spatial scales. In our global-scale study on drylands, plant-plant interactions were more strongly related to functional traits of the species involved than to the environmental variables considered. Thus, moving to a trait-based facilitation/competition approach help to predict that: 1) positive plant-plant interactions are more likely to occur for taller facilitated species in drylands, and 2) plant-plant interactions within woody-dominated ecosystems might be more sensitive to changing environmental conditions than those within grasslands. By providing insights on which species are likely to better perform beneath a given neighbour, our results will also help to succeed in restoration practices involving the use of nurse plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Can we infer plant facilitation from remote sensing? a test across global drylands.

Facilitation is a major force shaping the structure and diversity of plant communities in terrestrial ecosystems. Detecting positive plant-plant interactions relies on the combination of field experimentation and the demonstration of spatial association between neighboring plants. This has often restricted the study of facilitation to particular sites, limiting the development of systematic ass...

متن کامل

Ecological traits influence the phylogenetic structure of bird species co-occurrences worldwide.

The extent to which species' ecological and phylogenetic relatedness shape their co-occurrence patterns at large spatial scales remains poorly understood. By quantifying phylogenetic assemblage structure within geographic ranges of >8000 bird species, we show that global co-occurrence patterns are linked - after accounting for regional effects - to key ecological traits reflecting diet, mobilit...

متن کامل

Banded vegetation in some Australian semi-arid landscapes: 20 years of field observations to support the development and evaluation of numerical models of vegetation pattern evolution

     Periodic vegetation patterns (PVPs) are striking features of many global drylands. Although they have attracted wide research study, resulting in many hypotheses, their origin and controlling factors remain unresolved. Theoretical works dominate a large literature seeking to account for the occurrence and properties of PVPs, especially banded vegetation patterns (‘tiger bush’). In light of...

متن کامل

Multiple Assembly Rules Drive the Co-occurrence of Orthopteran and Plant Species in Grasslands: Combining Network, Functional and Phylogenetic Approaches

Understanding the factors underlying the co-occurrence of multiple species remains a challenge in ecology. Biotic interactions, environmental filtering and neutral processes are among the main mechanisms evoked to explain species co-occurrence. However, they are most often studied separately or even considered as mutually exclusive. This likely hampers a more global understanding of species ass...

متن کامل

Genome composition and phylogeny of microbes predict their co-occurrence in the environment

The genomic information of microbes is a major determinant of their phenotypic properties, yet it is largely unknown to what extent ecological associations between different species can be explained by their genome composition. To bridge this gap, this study introduces two new genome-wide pairwise measures of microbe-microbe interaction. The first (genome content similarity index) quantifies si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Perspectives in plant ecology, evolution and systematics

دوره 16 4  شماره 

صفحات  -

تاریخ انتشار 2014